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a b s t r a c t

Several concerns exist regarding horse rearing such as environmental pollution, antibiotics resistance,
digestive disorders, mycotoxins contamination of animal feed, gut health management, and improve-
ment of feed efficiency. Nanoparticles have the potential to address these issues and thus could be used
as feed additive. Citrate reduces and stabilizes gold nanoparticles, alongside biosynthesized silver
nanoparticles have the potential to prolong and improve digestive enzyme activity, which would
enhance starch digestibility in the stomach. Zinc oxide and selenium nanoparticles could be used to
improve feed digestibility and volatile fatty acids production. Magnesium oxide, silver, and copper
nanoparticles exhibit strong antimicrobial activity against gram-positive and gram-negative microbes
and weaken the biofilm formation of the microbial community. Calcium, zinc, and silver nanoparticles
could be used to prevent periodontal disease in horses. In addition, silver nanoparticles may be applied
as antifasciolitics and potentially against other gastrointestinal parasites. Environmental concern of
equines could be addressed by using cerium oxide, silver, and cobalt nanoparticles to reduce methane
emission and zinc oxide could help to reduce fecal mineral output. Fullerol C60[OH]24, a honey-derived
silver nanoparticle and zinc oxide nanoparticles exhibit attractive antibacterial properties because of
increased specific surface area as the reduced particle enhance unit surface reactivity. Gut health
management of equines could be solved with nanoparticles because of the ability of ferrous oxide and
copper nanoparticles to improve microbial growth, whereas zinc oxide improves villus height, crypt
depth, and villous surface area. It is required to explore in depth the beneficial effects of these nano-
particles as a novel area in the equine industry's both in vitro and in vivo before recommendation to
equine owners.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

Throughout history, human activities and development have
constantly undergone changes and transformation. One of the new
techniques in the phase of development is nanotechnology.
Humans usually transfer applicable technology/technique in other
f interest.
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fields to animal production. Hence, the applications of nano-
particles in agriculture, especially as feed additives, health en-
hancers, and antimicrobial in animals, are increasing.
Nanotechnology is the technique of using organic and inorganic
matter, in minute-sized quantity usually between 1 to 100 nm to
incorporate nanosized materials for medical, antimicrobial, drug
delivery, electronics, cosmetic activity, food packaging, and
encapsulation with enhanced efficiency. Nanoparticles may be
defined as a small object that behaves as a whole unit for its
transport and owing to its high level of bioavailability and biode-
gradability [1].
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Several challenges occur in equine rearing, which are being
addressed such as environmental pollution, antibiotics resistance,
digestive disorders, fungal metabolites found as toxic contaminants
of feed, gut health management, and improvement of feed effi-
ciency. To address these challenges, nanoparticles are used as
alternative antimicrobial agents to overcome the use of antibiotics,
which had spread around the world at an alarming rate against
pathogenic bacteria, as feed additive, against mycotoxins, and as
biocidal agents [2]. Manipulations to improve equine productivity
or efficiency have been carried out through dietary supplements
such as yeast, probiotics, fibrolytic enzymes, and plant extract.
Nanoparticles are new feed additive that may be used in modern
animal nutrition. Nano feed additives may be used in animal feed
and health treatments [3]. The promising results in other livestock
such as poultry, pigs, and sheep could be translated to equine
nutrition. Organic nanoparticles are likely to be used to enhance the
nutrient value of feed systems because of bioavailability [4]. These
nanominerals showed their significant beneficial effects even at
doses lower than the conventional mineral sources [5]. Nano feed
additives could help in improving feed efficiency, reducing feed
cost, and could be used for fat protection to reduce intestinal
fermentation disruption [6].

Nanoparticles have unique features such as small size, high
surface area, surface charge, high catalytic efficiency, stronger
adsorbing ability [7], and exhibit higher absorption efficiencies. The
use of nanotechnology such as nanoencapsulation and nano-
particles in animal nutrition, to ensureminute addition of materials
in smaller particulate, and to perform the same function as bulk-
sized counterpart may be referred to as “nano nutrition/nano ad-
ditives”. Metal and phytobased synthesized nanoparticles are used
in animal nutrition research such as silver, gold, calcium, iron, se-
lenium, silicon, titanium, and zinc which are used in various fields
of nanotechnology research.

The recent development in these fields of nanoscience and
nanotechnology could be transferred to equine production system
and/or nutrition with applications such as feed additives to facili-
tate health and improve productivity, mineral bioavailability,
removal or inactivation of toxins in animal feeds. In addition, they
have enormous potential to mitigate environmental problems.
Nanoparticles are expected to have an advantage of bioavailability,
small dose rate, and stable interactionwith other components [8]. It
is important to note that there are extremely limited articles on the
use of nanoparticles in equines. Hence, this review is meant to
encourage equine researchers to expand the knowledge on the
potential of nanomaterials.

2. Type of Nanoparticles Used in Animal Research

Common nanoparticles used in animal production and feed
additives are polymeric, liposome, dendrimer, micellar nano-
particles, and ceramic nanoparticles. Carbon-based nanoparticles
such as fullerene and carbon nanoparticles which are organic and
metallic inorganic nanoparticles have also been used. Metallic
nanoparticles are commonly used nanomaterials in livestock pro-
duction such as gold, silver, cobalt, copper, chromium, magnesium
oxide, ferrous oxide, zinc oxide, titanium oxide, and selenium.
Nanoparticles are also synthesized from plants such as Azadirachta
indica, Camellia sinensis, and Aloe vera, which are known as green
nanoparticles. Nanoparticles have veterinary application, used for
destruction of cancer cells, drug delivery system, antimicrobial
agents [9,10], application in waste treatment, and to reduce
bleeding (Hangge). Toxicity of nanoparticles has been observed
because of their accumulation in the liver, and lung tissue of sheep,
rats, and fishes, as well as the brain in laboratory animals [10]. The
properties, formation, and sizes of these nanoparticles [2,11],
syntheses such as activated carbon from biowaste, honey-mediated
nanoparticles [12,13], application [5e7,14,15], and toxicity [16e18]
have been thoroughly reviewed.

3. Mechanism of Action

A common way of action of nanoparticles is to trigger oxidative
damage through inducing reactive oxidative species, cell mem-
brane disruption, and the inhibition of cell division and cell death
[19e22]. The excessive formation of reactive oxygen species
including hydrogen peroxide leads to oxidative stress and subse-
quent cell damage [23]. Others include depletion of intracellular
ATP production and disruption of DNA replication [24].

Specifically, some nanoparticles have been biofunctionalized to
serve as an alternative to materials such as mannose, which create
attraction for bacteria adhesion through mannose receptor sites
[25,26]. Furthermore, the antimicrobial activity of carbon nano-
particles may be attributed to the electrostatic repulsion between
gram-negative microorganisms and carbon surface whereby mi-
crobes adhere to carbon particles through strong van der Waals
forces and modification of positive charge on carbon surface in
gram-positive bacteria [27]. Carbon nanoparticles penetrate into
the cell and prevent bacteria cell division and cell death, which
results in cell lysis [22,28].

Silver nanoparticles inactivate enzymes, change expression of
protein, and damage the respiratory chain, which destroys bio-
macromolecules [29]. Nanoparticles also act by disrupting bacterial
cell membrane or bursting bacteria membrane through its hydro-
phobic chains of certain lengths [25,30]. Polymeric nanoparticles
kill microbes on contact with bacterial cells because of the strong
interaction of their cationic surfaces with the bacterial cells [31].
Furthermore, nanopiercing results by the action of nanoparticles
prickly structure such as zinc-doped copper oxide prickly nano-
particles, which have high killing efficiency due to bacteria cell wall
disruption [32]. Nanoparticles disrupt microbial membrane and
hinder biofilm formation, which could aid antimicrobial activity.
Biofilms are specifically microbial aggregates that rely on a solid
surface and extracellular products, such as extracellular polymeric
substances [33]. Thus, biofilms are a serious health threat [34,35],
and thus hindering biofilm formation could increase susceptibility
of pathogenic microbes. However, acetate kinase and coenzyme
F420 are important enzymes in the methanation processes. The
acetate in this process is converted to methane; hence, nano-
particles inhibit methane emission by reducing the population of
Achaea and the suppressing acetate kinase and coenzyme F420
[36]. Owing to the different engineering techniques and types of
nanoparticles, nano-based feed additives can facilitate awide range
of functions as shown in Fig. 1.

4. Potential Application of Nanoparticles in Equines

4.1. Nanoparticles and Feed Digestibility

Digestive disorders in equines have been linked to feeding high-
starch grain diets [37]. This is because undigested or poorly
digested starch in the stomach of equines enters the cecum-colon
chamber where anaerobic fermentation takes place, which dis-
rupts the normal microbial balance/activity due to depression of
hindgut environmental pH. Hence, if digestion of soluble carbo-
hydrates such as starch/grains in the stomach is enhanced, a lower
flow of starch to the hindgut occurs. Yeast is useful in improving
starch digestibility and consequently reducing volatile fatty acids
production [37]. Nanoparticles are also capable of doing similar
things. Nanoparticles could also be used in equine diets to improve
starch digestibility. The activity of digestive enzymes such as



Fig. 1. Mechanism of action of various nanotechnology-based feed additives in improving the equine health and well-being.

M.J. Adegbeye et al. / Journal of Equine Veterinary Science 78 (2019) 29e37 31
protease, amylase, and lipase could be used as indicator of potential
feed utilization [38] and to a certain extent, digestive capacity
based on feed offered.

The study of Saware et al [39] showed an increased enzymatic
activity of a-amylase in the presence of citrate-reduced gold and
biosynthesized silver compared with the control (amylase) without
nanoparticle (free enzyme). The a-amylase activity increased by
more than 1.5-fold in the presence of gold and silver nanoparticles
with more activity with gold nanoparticle present. Further studies
showed that the enzymatic activity increased with increasing
starch solution (0, 0.25, 5, 10, 20, 30, 40, and 50 mg/mL). This
demonstrates the nanocatalyst activity of the nanoparticles due to
their increased breakdown of starch to reducing sugar. Thus, the
use of nanoparticles could have a catalytic activity on starch intake,
which would reduce starch granules flowing to the equine hindgut;
hence, reducing microbial dysbiosis. The reason for this increased
activity compared with soluble (free) enzyme is because the
immobilized enzyme that made the solid nanoparticles overcame
the common collision frequency that occurs between free enzyme
and the molecules of the substrate [39]. In addition, efficiency of
enzyme on solid support increases when compared with its free
form [40]. Furthermore, enzymes are attached to the nanoparticle
after the degradation of starch from the composite and not to the
reducing sugars, although the enzymatic activity was retained [41].
This may also be applied to fibrolytic enzymes in equine diets to
increase fiber digestibility. The efficiency of enzymes may reduce
the quantity of fibrolytic enzymes used in equine diets.

Similarly, citrate-stabilized gold nanoparticles with an average
size of 11 nm increased a-amylase activity with increasing starch
concentration [42]. It was observed that 0.175, 0.35, 0.70, 1.40 mg/
mL of a-amylase resulted in about 9-, 6-, and 5.5-fold increase in
a-amylase concentration when probed with starch in the presence
of gold nanoparticles. The decrease in enzymatic activity with
increasing a-amylase is due to the attachment of the enzyme to the
nanoparticles and the subsequent agglomeration, which reach the
active sites of the enzyme inaccessible to starch molecules, which
decrease the rate of reaction [42].

Another study by Muralisankar et al. [43] found that supple-
menting zinc nanoparticles at 60 parts per million (ppm) level
showed improved activities of digestive enzymes (protease,
amylase, and lipase) in aquaculture. In fact, enzymatic activity such
as in trypsin and peroxidase may be prolonged for weeks instead of
few hours when attached to nanoparticles such asmagnetic Fe [42],
which would help to improve metabolic activity, and digestion of
feed consumed by equines. Volume of gas produced in vitro after
feed incubation may be used as energy fed value and feed di-
gestibility because of the estimation of short chain fatty acids and
organic matter digestibility. Chanzanagh et al [44] showed that
in vitro digestion of plant protein using 30 ppm of nano-ZnO
resulted in 3.68% more gas production for soybean meal, 11.63%
for rapeseed meal, 14.71% for cottonseed meal, in 24 hours
fermentation period. Consequently, short-chain fatty acid produc-
tion increased by 3.71% for soybean meal, 11.70% for rapeseed meal,
and 15.0% increase for cottonseed meal. The increase in in vitro gas
production and short chain fatty acid may be attributed to
improved microbial activity, which was aided by the nanoparticles
inclusion. Application of Zn improves fermentation and increases
the energy value of the diet [45]. Supplementation of 4 g/kg dry
matter (DM) nanoselenium (supply 4 mg selenium) resulted in
12.7, 11.3, 9.3, 19.5, and 16.6% increase in DM, organic matter, crude
protein, acid detergent fiber, and neutral detergent fiber (NDF) di-
gestibility, respectively [46]. Nanoselenium supplementation
resulted in 17.3% and 5.7% increase in propionic acid and total
volatile fatty acids, respectively, and 24.43% decrease in ammonia
nitrogen when fed to sheep. Furthermore, in situ DM and NDF di-
gestibility of Leymus chinensis was improved by 81.9% and 103.6%,
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respectively, compared to control diet. The increased digestion may
be due to large specific surface areas which improve adequate
nutrient binding and biological interactions [47]. Furthermore,
there is an enhancement of adsorption capacity due to the high
amounts of Gibb's free energy in nanoparticles [48].

4.2. Microbial Activities and Health Benefit of Nanoparticles

Animal body coexists with a myriad of microbes, which could be
beneficial or pathogenic. One of the objectives of using nano-
particles in animal feed is to reduce the population of pathogenic
microbes and stimulate the growth of beneficial microbes [49]. A
great number of metal and nonmetal nanoparticles such as copper,
gold, silver, silica, zinc oxide, carbon-based nanomaterials possess
biocidal properties [50]. High dosage of heavy metals such as Zn
and Cu is an important contributor for maintaining an adequate
antimicrobial resistance [51]. Antibiotics therapy is applied to
horses for preventing and treating bacterial infections [52,53],
which help to reduce the rate of infection, death losses, and reduce
overall performance [54,55]. However, clinically relevant antibiotic
potentially causes diseases such as diarrhea or colitis in equines
[54,56]. Nanoparticles are a promising alternative to antibiotics
with the additional advantage of promoting growth due to their
high bioavailability [14].

Nanostructured MgO is low cost, easy to manipulate, and show
intrinsic biocompatibility [57]. This nanoparticle presents antimi-
crobial activity at 0.7, 1.0, and 1.4 mg/mL against Escherichia coli and
Pseudomonas aeruginosa, by damaging the cell wall, cell membrane,
and the destruction of formed biofilms [58e60]. Nanoparticles may
be used as prebiotics in animal feeding [61]. Similarly, an increase
in the population of Lactobacillus and Bifidobacterium in cecal
digesta and decrease in coliforms population occurs when copper-
loaded chitosan nanoparticles are used [62]. Supplementation with
graded level of 0, 25, 50, and 75 mg/kg copper nanoparticles in-
creases growth of total bacteria, which was in a range of 45.97%e
105% compared with the control [63]. This is an indication of the
probiotic potentials of nanoparticles. Furthermore, pathogenic
E. coli and Clostridium spp. were reduced by about 1.6- to 2.7-fold
and 1.37- to 2.86-fold, respectively, compared with control with
nanoparticle supplementation.

Dental diseases and digestive disorders are health concerns in
equines [64]. Horses suffer from a variety of oral/dental diseases that
have polymicrobial infectious etiologies, such as caries, endodontic
or periapical infections, and periodontal disease [65]. Periodontitis is
a chronic inflammatory disease characterized by destruction of the
tooth-supporting structures [cementum, periodontal ligament, and
bone]; if untreated tooth loss can occur [53]. The use of local and
systemic antibiotics and topical application of antiseptics are main
ways to treat this disease which has shown mixed results [55,64].

Treatment of periodontitis bacteriawith calcium, zinc, and silver
nanoparticles increased biofilm formation but this biofilm was
susceptible to detachment [55]. Biofilm formation is the means by
which microbes reduce the impact of antibiotics [66] by hiding
themselves within the polymeric matrix [67]. Specifically, the
number of bacteria [CFU/biofilm] for Veillonella parvula NCTC 11810
and Porphyromonas gingivalis ATCC33277 were lower than the
control when calcium and silver nanoparticles were used. Similarly,
Streptococcus oralis CECT 907T bacterial growth was lower than the
control when treated with Ca, Zn, and Ag. This is attributed to the
antiseptic potential of the metal cation [53]. The initial increase in
biofilm formation may be attributed to the surface charges of
nanoparticles, which attract bacteria membranes. Furthermore, the
cation on the nanoparticles attracts the anion charge of the bacteria
membrane of �20 mV at neutral pH [68]. Silver nanoparticles
possess antimicrobial activity among the bacteria isolated from
horse dung [56]. Hence, inclusion of such nanoparticles in equine
water, or giving them to horses orally could help to alleviate or
reduce periodontal pathogens. However, Actinomyces naeslundii
ATCC 19039, Fusobacterium nucleatum DMSZ 20482, and Aggrega-
tibacter actinomycetemcomitans DSMZ 8324 grew more in the
nanoparticle-treated group than in the control. Still, it was
observed that despite their increased growth, the 72 hour biofilm
formed was weakened. This showed that even with high growth of
pathogenic bacteria, nanoparticles acted as a weak link among the
biofilm, which aided in their breakdown and caused cell death [53].

Fascioliasis is caused by a liver fluke belonging to the genus
Fasciola. A large number of farm animals, such as sheep, goats,
cattle, buffalo, horses, donkeys, camels, and rabbits, present a
prevalence rate up to 90% in some areas [69]. Silver nanoparticles of
4.6 nm produced by Trichoderma harzianumwere tested in vitro on
its ability to inhibit egg hatching compared with conventional drug
triclabendazole. It was observed that nanoparticles inhibited egg
hatching of Fasciola by 28.71% compared with a conventional drug
[70]. This action of the nanoparticle may be due to perforation of
the cellular membrane, which looks like cell wall pits, which could
cause cytoplasmic leakage and probably inactivated respiratory
chain [32] and result in the death of such egg [59].

4.3. Physiology

Supplementation of copper nanoparticles at graded level of 0,
25, 50, and 75 mg/kg copper nanoparticles level improved the
growth rate and plasma superoxide dismutase (SOD) (u/mL) with
50 and 75 mg/kg having the highest response, respectively [63].
Superoxide dismutase helps to prevent inflammations derived
from sports injuries, which is indubitably important for equines.
Similarly, pH and ammonia in copper nanoparticles-supplemented
rabbits were lower than the control. The low pH was in a range of
6.17e6.57. Low pH may sometime mean an indication of rapid
digestion of soluble substrate, which drops pH. The pH did not pose
any risk of acidosis. The lowammonia nitrogenmay be attributed to
the improvement in the utilization by fermenting microbes. Simi-
larly, inclusion of 60 mg nano-ZnO/kg diet and 30 mg Zinc Oxide
nanoparticle (nZnO)/kg in the diet of rabbits increased serum SOD
threefold and twofold, respectively, compared with normal 60 mg
nano-ZnO/kg supplementation [4].

So far, the major source of Zn for animal feed supplementation has
been its inorganic salts, such as zinc sulfate, zinc oxide, and zinc
chloride [71]. However, the use of thismineral as a growth promoter is
one of crucial health and environmental concerns [14]. Poor bioavail-
ability of Zn from inorganic source [72] has encouraged nutritionist to
search for mineral sources of higher bioavailability. Use of nano-
particles in nutrition is a thing of interest because of its ability to break
cellular membrane barrier that might inhibit other forms because of
sizes. Nanoparticles have shown novel properties such as higher
bioavailability [10,60], higher surface activity, catalytic efficiency, and
strong adsorption which is not peculiar to normal-sized particles and
has higher uptake and absorption and capable of reaching body in-
tricacies such as the tissue, lymph systems, liver, and spleen [73].

The study of Uniyal et al. [71] on zinc nanoparticles showed a
19% increase in serum Zn and 57.84% increase in erythrocytic SOD
activity. Serum increase may be attributed to higher absorption of
Zn, which would have come from bioavailable Zn while SOD ac-
tivity showed increased ability of Zn nanoparticles to enhance
cytointegrity. Nanoselenium supplementation (0.075, 0.15, 0.30,
and 0.60 mg/kg diet) had higher erythrocyte SOD with 2.23-, 5.79-,
3.54-, and 4.89-fold increase than 0.3 mg/kg sodium selenite sup-
plementation in laying birds [74].

Villus length, crypt depth, villi/crypt ratios, villus width, and
villus surface area are important indicators of intestinal
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morphology, which play critical roles in nutrient absorption. A
30 nmesized 1,200 mg/kg diet ZnO nanoparticles and 20 mg/kg
colistin sulfate and 20 mg/kg colistin sulfate þ 3,000 mg/kg ZnO
showed that ZnO nanoparticles are capable of increasing gut
structure, absorption, and regeneration by improving the villus
length, crypt depth, and villus surface area of duodenum and ileum
[75]. Surface area improved by 20% and 52% in duodenum and
jejunum, respectively. The use of inorganic sources of minerals for
farm animals is a challenge because it causes environmental
pollution due to the low bioavailability of minerals, which results in
20e30 times the nutritional requirement of animals [71], and un-
absorbed ones are excreted in feces and urine, which contributes to
water or soil pollution. Nanoparticle use as mineral sourcemay be a
good option to reduce this contamination. Fecal output of ZnO
nanoparticles was 37% lower than 20 mg/kg colistin sulfate plus
3,000 mg/kg ZnO [71]. This improvement in the gut structure with
the use of nanoparticles as feed additives may be useful for nutrient
absorption in equines.

4.4. Nanoparticle and Methane Emission

Nanomaterials are eco-environmentally sustainable and
significant advances have been made in the field of green
Table 1
Summary of potential benefits of nanoparticles in equine.

Nanoparticles Dose Application

Citrate-reduced gold and
biosynthesized silver

Not specified Starch digestibility

Citrate-stabilized gold
nanoparticles

Not specified Starch digestibility

Zinc 60 ppm Feed digestibility

Zinc oxide 30 ppm Feed digestibility f
generation

Selenium nanoparticle 4 g/kg dry matter Feed digestibility

Magnesium oxide 0.7,1.0 and 1.4 mg/mL Antimicrobial ther

Copper nanoparticles 0, 25, 50, 75 mg/kg Growth promoter,
antibiotics

Calcium, zinc, and silver
nanoparticles

40 ppm Antiperiodontitis

Silver nanoparticle 50 mg/mL Antifascioliasis
Zinc oxide 30 and 60 mg/kg diet Antioxidant, preve

inflammations, tre
injuries

Zinc nanoparticle 20 ppm Antioxidant
Nanoselenium 0.075, 0.15, 0.30,

0.60 mg/kg
Antioxidant

Zinc oxide 1,200 mg/kg diet Gut health, minera

Cerium dioxide and
zinc oxide

100 mg/L of cerium and
1,000 mg/L of zinc oxide

Greenhouse gas m

Zinc oxide 30 and 150 mg/g total solid Greenhouse gas m
Copper nanoparticles 25, 50, 75, and 100%

replacement of standard
copper recommendation,
that is, 7.5 mg/kg

Mineral supplemen
replacement for in

Silver and magnesium oxide,
and ferrous oxide Nanoparticle

500 mg/g total suspended
solid, 100 mg/g Fe2O3

Greenhouse gas m
probiotic

Cobalt nanoparticle 2 mg/L Greenhouse gas m

Fullerol C60(OH)24 10, 100, 1,000 ng/mL Feed additive again
Honey-derived silver nanoparticle 10, 20, 30 and 40 mg Feed additive again
Zinc oxide nanoparticle 2, 4, 6, 8, 10 mg/mL Feed additive again

Silver nanoparticle 90 mg/mL Feed additive again
nanotechnology [76]. Nanoparticles have been reported to be toxic
to certain microorganisms and inhibit the methane gas generation
in animals with anaerobic digestion [15].

About 100 mg/L and 1,000 mg/L of cerium oxide and zinc oxide
reduced methane output during anaerobic digestion by 27.8% and
79.1%, respectively, compared with control [77]. This is due to
strong inhibition for hydrolysis and methanogenesis steps [36]. At
concentration of 630 mg/L of cerium oxide, biogas production was
100% inhibited in anaerobic digestion [78]. This may be useful for
equine manure management, which generates methane when
managed inappropriately.

Short-term (8 days) and long-term (105 days) exposure to 30
and 150 mg/g total suspended solid ZnO nanoparticles reduced
methane production by a 21.5% and 76.4% for 30 and 150 mg/g
respectively, in short term, while 30 and 150 mg/g reduced
methane by 19.8% and 73.9% respectively, in long term, which
reduced the chance of adaptation [79]. This may be useful for
in vivo reduction of methane emission and anaerobic production of
methane through poor management of feces. The reduction may be
attributed to lower population of archaea and the suppression of
acetate kinase and coenzyme F420 [36].

The use of Cu nanoparticles showed a reduction in Cu excretion
through the droppings of the animal [10,80]. There was 12.35%
Effects Reference

Improvement of a-amylase activity to enhance
starch digestibility

[39]

Improvement of a-amylase activity to enhance
starch digestibility

[42]

improved activities of digestive enzymes
(protease, amylase, and lipase)

[43]

or energy Improved gas production and short chain
fatty acid from plant protein

[44]

Increased propionate acid, total volatile fatty acids,
reduced ammonia nitrogen, improved dry matter
and neutral detergent fiber digestibility

[46]

apy Antimicrobial activity against Escherichia coli and
Pseudomonas aeruginosa

[58]

alternative to Improved growth rate, lower ammonia nitrogen,
increased total bacteria, reduced population of
E. coli and Clostridium spp.

[63]

Reduced population of Veillonella parvula,
Porphyromonas gingivalis, and Streptococcus
oralis and weakening of biofilm formation

[53]

Inhibition of egg hatching [70]
nting
ating sport

Increased superoxide dismutase [4]

Enhanced erythrocyte superoxide dismutase [71]
Enhanced erythrocyte superoxide dismutase [74]

l source Improved villus length, crypt depth and improved
villous surface area of duodenum and ileum,
reduced fecal mineral output

[75]

itigation 27.77% and 79.11% reduction in methane output [77]

itigation 21.5 and 76.5% reduction in methane output [79]
tation as
organic source

Reduced fecal mineral output [80]

itigation and Reduced methane output and ferrous oxide
improved bacteria growth

[81]

itigation 63.6% and 98.21% reduction in methane output
than control and CoCl2 salt

[82]

st toxins Prevent synthesis of aflatoxins precursor [90]
st mycotoxins Reduces aflatoxin production [12]
st mycotoxins Reduced mycotoxin production and complete

inhibition at 10 mg/mL
[93]

st aflatoxin Inhibition of aflatoxin B1 [94]
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reduction in excretion compared with the standard inorganic Cu
supplementation even when Cu nanoparticle was included at the
recommended level of 7.5 mg/kg feed in poultry. This is important
for environmental considerations. Hence, Cu nanoparticle may be
included in the equine diet or used in premixes used in formulating
equine diets.

Anaerobic digestion of sludge showed that 500 mg/g total sus-
pended solid of Ag nanoparticles and 500 mg/g total suspended
solid of MgO nanoparticles generated lower levels of methane
production (73.52% and 1.08% than control, respectively) [81]. In
addition, bacteria growth increased by 119% compared with control
after exposure to 100 mg/g total suspended solid of Fe2O3
nanoparticles.

Abdelsalam et al [82] studied in vitro anaerobic digestion, with a
similar occurrence of microorganisms compared with that of
hindgut fermenter, to generate bioenergy through microbial
fermentation of feed consumed. Results showed that inclusion of
cobalt nanoparticles reduced methane and associated greenhouse
gasses generated in biogas. Two milligrams per liter Co nano-
particles included in anaerobic digestion of slurry reduced biogas
production by 38.56% and 76.56% compared with control and
1 mg/L CoCl2 salt, respectively. Furthermore, 2 mg/L Co nano-
particles reduced methane output by 63.6% and 98.21% compared
with control and 1 mg/L CoCl2 salt, respectively. This was due to
alteration in the atoms and development of a magnetic force. It can
be projected that the smaller size of nanomaterial possesses a
larger surface area and exhibits more activity [76]. Hence, cobalt
Fig. 2. Flowchart of the investigation methodology fo
nanoparticle has the potential to reduce methane if included in
equine diets. This calls for further in vitro fermentation studies
using equine feces output or rumen fluid.

4.5. Mycotoxins Removal

Mycotoxins are a byproduct of various fungi, especially Asper-
gillus flavus and Aspergillus parasiticus [12], which grow on grains
either on the fields or during storage. These contaminated grains
are eventually fed to livestock, which affects animal performance.
Cereals grains are added to the equine diet to complement grass,
hay, or silage. These mycotoxins can cause intoxications [83], can
affect the athletic performance of horses, influence the reproduc-
tive system, and decrease the economic value of a horse [84].

Mycotoxins such as aflatoxins, zearalenone, deoxynivalenol, T-2
toxin, fumonisins, ochratoxin A, N-acetyl norloline, and peramine
are prevalent in maize, silage, and finisher diets. They are capable of
disrupting animal performance. Other emerging mycotoxins are
fusaproliferin, moniliformin, beauvericin, and enniatins, claviceps
(ergot alkaloids), and alternaria (altenuene, alternariol, alternariol
methyl ether, altertoxin, and tenuazonic acid) [85]. These myco-
toxins are among the most dangerous for animals. They may alter
immune system such as immune suppression of inflammation [84]
loss of feed intake, weight loss, reduced productivity, increased
liver enzymes, cardiotoxicity, central nervous system disorders,
gastrointestinal tract damage, nephrotoxicity, and hepatotoxicity
[86], and its effect is more devastating in nonruminants than
r validating nano-based feed additives in equines.
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ruminants [87]. Various adsorbents such as yeast cell walls, clay
binders, antioxidant additives [86] nanoparticles, and products
from Biomin and Alltech are currently used as nutritional additives
to bind or reduce the negative effect of mycotoxins in livestock.
Nanotechnology approaches seem to be a promising, effective, and
low-cost way to minimize the health effects of mycotoxins [86]
including nanominerals and nanocomponents. The advantage of
nanoparticles is due to their high surface areaetoevolume ratio,
which enables them to bind to mycotoxins [88].

It is well documented that there is a relation between oxidative
and/or drought stress, conidia production, and aflatoxin biosyn-
thesis [89]. Kova�c et al [90] studied the influence of fullerol nano-
particles at 8 nm onmycelial growth of A. flavus NRRL 3251 in vitro;
10 g/mL resulted in mycelia growth suspension between 72 and
144 hours of the growth phase. Furthermore, all tested level of
fullerol C60[OH]24 nanoparticles (10, 100, and 1,000 ng/mL) reduced
the synthesis of norsorolinic acid, an aflatoxin precursor, by about
67% in 72 hours. The mechanism of biological activity of fullerol
nanoparticles is related to their antioxidative properties, while
A. flavus is sensitive to oxidative status perturbations [90]. The in-
hibitionmay be due to the interactions with and/or adsorption onto
the fungal cell wall [91], where fullerol nanoparticles alter the
fungal cell signal input by interfering with gene expression regu-
latory networks upstream of aflatoxin B1 biosynthesis or block a
biosynthetic enzyme activity [92]. This implies that fullerol nano-
particles could be added to equine diets. However, confirmatory
tests should be carried out in vitro.

A study showed that 1, 2, and 3 mg/100 mL media of honey-
derived Ag nanoparticles of 9 nm reduced the aflatoxin pro-
duced by A. parasiticus by 21.79, 46.81, and 61.13%, respectively
[13]. Similarly, 1e3 mg of 100 mL media of honey-derived Ag
nanoparticle ochratoxin A by Aspergillus ochraceuswas reduced by
45.83, 58.20, and 79.9% for 1, 2, 3 mg, respectively, and signifi-
cantly inhibited the mycelium growth of both fungi in a dose-
dependent manner when treated with Egyptian honey-Ag nano-
particle colloids at 10, 20, 30, and 40 mg. The inhibitory effect of Ag
nanoparticles on fungal growth may be due to alteration of cell
membrane permeability, the release of lipopolysaccharides and
membrane proteins, generation of free radicals responsible for the
damage of membrane, and dissipation of the proton motive force,
which results in the collapse of the membrane potential [24].
Pretreatment of aflatoxigenic, ochratoxigenic, and FB1 fungi with
ZnO nanoparticles at 2, 4, 6, 8, and 10 mg/mL reduced mycotoxins
production, while 10 mg/mL inhibited it completely [93].
Furthermore, incubation of A. parasiticus with silver nanoparticles
for 7 days at concentration of 90 mg/mL to determine aflatoxin
production inhibited AFB1 production. Hence, the benefit of silver
nanoparticles as a potential antifungal option is evident [94]d
Table 1. The beneficial effects of feed additives observed in various
livestock species could not be assured and effective in equines
because of the dissimilarities in dosage requirements [95]. To
arrive a safe dosage of nano-feed additives in equines, especially at
the field level, requires an extensive investigation as shown in
Fig. 2.

5. Conclusion

In the exploration of feed additives to improve equine produc-
tion, nanoparticles offer a promising alternative because of its po-
tential as probiotic, enhancer of digestibility, capacity to reduce
greenhouse gas production, antimicrobial properties, enhancer of
gut structure development, capacity to improve animal health,
boosting of mineral absorption and capacity to reduce feed myco-
toxins. Hence, nanoparticles application is a novel area for the
equine industry and should be explored in greater depth.
6. Implication

The present review was conducted to provide information on
the potential of nanotechnology in the equine research field. Hence,
instead of antibiotics, metallic and synthesized nanoparticle com-
ponents could be used as alternative antimicrobial agents against
pathogenic microbes. Mycotoxin contamination of agricultural
products used in equine nutrition could also be avoided by nano-
particles. Furthermore, poor starch digestibility in the stomach of
horses could be enhanced by nanoparticles because of its ability to
improve and prolong the activity of digestive enzymes, which could
help to tackle digestive upsets relating to excessive grain feeding.
Mitigation of greenhouse gasses in equine is an important area that
nanoparticles could fix. Nanoparticles have the potential to resolve
challenges in equines and could thus be included as feed additives
in diets for horses.
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